In robotics and computer vision communities, extensive studies have been widely conducted regarding surveillance tasks, including human detection, tracking, and motion recognition with a camera. Additionally, deep learning algorithms are widely utilized in the aforementioned tasks as in other computer vision tasks. Existing public datasets are insufficient to develop learning-based methods that handle various surveillance for outdoor and extreme situations such as harsh weather and low illuminance conditions. Therefore, we introduce a new large-scale outdoor surveillance dataset named eXtremely large-scale Multi-modAl Sensor dataset (X-MAS) containing more than 500,000 image pairs and the first-person view data annotated by well-trained annotators. Moreover, a single pair contains multi-modal data (e.g. an IR image, an RGB image, a thermal image, a depth image, and a LiDAR scan). This is the first large-scale first-person view outdoor multi-modal dataset focusing on surveillance tasks to the best of our knowledge. We present an overview of the proposed dataset with statistics and present methods of exploiting our dataset with deep learning-based algorithms. The latest information on the dataset and our study are available at https://github.com/lge-robot-navi, and the dataset will be available for download through a server.
translated by 谷歌翻译
In video person re-identification (Re-ID), the network must consistently extract features of the target person from successive frames. Existing methods tend to focus only on how to use temporal information, which often leads to networks being fooled by similar appearances and same backgrounds. In this paper, we propose a Disentanglement and Switching and Aggregation Network (DSANet), which segregates the features representing identity and features based on camera characteristics, and pays more attention to ID information. We also introduce an auxiliary task that utilizes a new pair of features created through switching and aggregation to increase the network's capability for various camera scenarios. Furthermore, we devise a Target Localization Module (TLM) that extracts robust features against a change in the position of the target according to the frame flow and a Frame Weight Generation (FWG) that reflects temporal information in the final representation. Various loss functions for disentanglement learning are designed so that each component of the network can cooperate while satisfactorily performing its own role. Quantitative and qualitative results from extensive experiments demonstrate the superiority of DSANet over state-of-the-art methods on three benchmark datasets.
translated by 谷歌翻译
Occluded person re-identification (Re-ID) in images captured by multiple cameras is challenging because the target person is occluded by pedestrians or objects, especially in crowded scenes. In addition to the processes performed during holistic person Re-ID, occluded person Re-ID involves the removal of obstacles and the detection of partially visible body parts. Most existing methods utilize the off-the-shelf pose or parsing networks as pseudo labels, which are prone to error. To address these issues, we propose a novel Occlusion Correction Network (OCNet) that corrects features through relational-weight learning and obtains diverse and representative features without using external networks. In addition, we present a simple concept of a center feature in order to provide an intuitive solution to pedestrian occlusion scenarios. Furthermore, we suggest the idea of Separation Loss (SL) for focusing on different parts between global features and part features. We conduct extensive experiments on five challenging benchmark datasets for occluded and holistic Re-ID tasks to demonstrate that our method achieves superior performance to state-of-the-art methods especially on occluded scene.
translated by 谷歌翻译
半监督视频对象细分(VOS)旨在密集跟踪视频中的某些指定对象。该任务中的主要挑战之一是存在与目标对象相似的背景干扰物的存在。我们提出了三种抑制此类干扰因素的新型策略:1)一种时空多元化的模板构建方案,以获得目标对象的广义特性; 2)可学习的距离得分函数,可通过利用两个连续帧之间的时间一致性来排除空间距离的干扰因素; 3)交换和连接的扩展通过提供包含纠缠对象的训练样本来迫使每个对象具有独特的功能。在所有公共基准数据集中,即使是实时性能,我们的模型也与当代最先进的方法相当。定性结果还证明了我们的方法优于现有方法。我们认为,我们的方法将被广泛用于未来的VOS研究。
translated by 谷歌翻译
基于分数的生成模型(SGM)是生成假图像的最新突破。已知SGM可以超越其他生成模型,例如生成对抗网络(GAN)和变异自动编码器(VAE)。在这项工作中,我们受到了他们的巨大成功的启发,我们将它们完全自定义以生成伪造的表格数据。特别是,我们对过度采样较小的课程感兴趣,因为不平衡的课程经常导致次优训练成果。据我们所知,我们是第一个提出基于得分的表格数据超采样方法的人。首先,我们必须重新设计自己的分数网络,因为我们必须处理表格数据。其次,我们为我们的生成方法提出了两个选项:前者等同于表格数据的样式传输,后者使用SGMS的标准生成策略。最后,我们定义了一种微调方法,该方法进一步提高了过度采样质量。在我们使用6个数据集和10个基线的实验中,我们的方法在所有情况下都优于其他过采样方法。
translated by 谷歌翻译
半监控视频对象分割(VOS)旨在跟踪像素级别的视频初始帧中存在的指定对象。为了充分利用对象的外观信息,像素级别匹配广泛用于VOS。传统的特征匹配以样式方式运行,即,仅考虑从查询帧到参考帧的最佳匹配。查询框中的每个位置是指参考帧中的最佳位置,而不管每个参考帧位置的频率如何。在大多数情况下,这效果很好,并且对快速外观变化是强大的,但是当查询框架包含看起来类似于目标对象的后台分散组时可能会导致严重错误。为了缓解这一问题,我们介绍了一种自由派匹配机制,找到从查询帧到参考帧的最佳匹配,反之亦然。在查找查询帧像素的最佳匹配之前,首先考虑用于参考帧像素的最佳匹配以防止每个参考帧像素被过度参考。由于该机制以严格的方式操作,即,如果才能彼此确定匹配,则连接像素,因此可以有效地消除背景干扰器。此外,我们提出了一个掩模嵌入模块,以改善现有的掩模传播方法。通过使用坐标信息嵌入多个历史掩模,可以有效地捕获目标对象的位置信息。
translated by 谷歌翻译
Generative models have shown great promise in synthesizing photorealistic 3D objects, but they require large amounts of training data. We introduce SinGRAF, a 3D-aware generative model that is trained with a few input images of a single scene. Once trained, SinGRAF generates different realizations of this 3D scene that preserve the appearance of the input while varying scene layout. For this purpose, we build on recent progress in 3D GAN architectures and introduce a novel progressive-scale patch discrimination approach during training. With several experiments, we demonstrate that the results produced by SinGRAF outperform the closest related works in both quality and diversity by a large margin.
translated by 谷歌翻译
The 3D-aware image synthesis focuses on conserving spatial consistency besides generating high-resolution images with fine details. Recently, Neural Radiance Field (NeRF) has been introduced for synthesizing novel views with low computational cost and superior performance. While several works investigate a generative NeRF and show remarkable achievement, they cannot handle conditional and continuous feature manipulation in the generation procedure. In this work, we introduce a novel model, called Class-Continuous Conditional Generative NeRF ($\text{C}^{3}$G-NeRF), which can synthesize conditionally manipulated photorealistic 3D-consistent images by projecting conditional features to the generator and the discriminator. The proposed $\text{C}^{3}$G-NeRF is evaluated with three image datasets, AFHQ, CelebA, and Cars. As a result, our model shows strong 3D-consistency with fine details and smooth interpolation in conditional feature manipulation. For instance, $\text{C}^{3}$G-NeRF exhibits a Fr\'echet Inception Distance (FID) of 7.64 in 3D-aware face image synthesis with a $\text{128}^{2}$ resolution. Additionally, we provide FIDs of generated 3D-aware images of each class of the datasets as it is possible to synthesize class-conditional images with $\text{C}^{3}$G-NeRF.
translated by 谷歌翻译
In both terrestrial and marine ecology, physical tagging is a frequently used method to study population dynamics and behavior. However, such tagging techniques are increasingly being replaced by individual re-identification using image analysis. This paper introduces a contrastive learning-based model for identifying individuals. The model uses the first parts of the Inception v3 network, supported by a projection head, and we use contrastive learning to find similar or dissimilar image pairs from a collection of uniform photographs. We apply this technique for corkwing wrasse, Symphodus melops, an ecologically and commercially important fish species. Photos are taken during repeated catches of the same individuals from a wild population, where the intervals between individual sightings might range from a few days to several years. Our model achieves a one-shot accuracy of 0.35, a 5-shot accuracy of 0.56, and a 100-shot accuracy of 0.88, on our dataset.
translated by 谷歌翻译
Feature selection helps reduce data acquisition costs in ML, but the standard approach is to train models with static feature subsets. Here, we consider the dynamic feature selection (DFS) problem where a model sequentially queries features based on the presently available information. DFS is often addressed with reinforcement learning (RL), but we explore a simpler approach of greedily selecting features based on their conditional mutual information. This method is theoretically appealing but requires oracle access to the data distribution, so we develop a learning approach based on amortized optimization. The proposed method is shown to recover the greedy policy when trained to optimality and outperforms numerous existing feature selection methods in our experiments, thus validating it as a simple but powerful approach for this problem.
translated by 谷歌翻译